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A B S T R A C T

Identifying the top-𝐾 flows that require much more bandwidth resources in a large-scale Software-Defined
Network (SDN) is essential for many network management tasks, such as load balancing, anomaly detection,
and traffic engineering. However, identifying such top-𝐾 flows is not trivial, not only because of the
fluctuations in flow bandwidth requirements but also because of the combinatorial explosion of problem
instance sizes. In this paper, we weaken the tradeoff between exploration and exploitation and innovatively
define the online top-𝐾 flows identification problem as identifying the top-𝐾 arms in a Combinatorial Multi-
Armed Bandit (CMAB) model. Then, we propose a general greedy selection mechanism with some identification
strategies that focus on temporal variations in the rewards. Extensive simulation experiments based on real
traffic data are conducted to evaluate the performance of different strategies. In addition, the results of
numerical simulations demonstrate that our proposed greedy selection mechanism significantly outperforms
existing counterparts on top-𝐾 arms identification.
Because in SDN, managers can effectively and timely collect statis-
tical data of traffic flows [12,13], some researchers put forward the
concept of Knowledge-Defined Networking (KDN) [14] based on SDN
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1. Introduction

Software-Defined Network (SDN) [1] is a novel network architec-
ture that decouples the network control plane and data forwarding
plane, providing operators with a flexible and low-cost new way to
manage the network. In SDN, operators can deploy various manage-
ment policies (e.g., data flows forwarding policy) to the controllers
based on a global view, and then the data forwarding plane will
carry out these policies. In addition, operators can adjust these policies
dynamically by collecting and analyzing the statistics on data flows.

In a real network, the distribution of traffic flows is extremely
skewed [2], that is, more than 80% of the traffic flows are less than
10 KB in size, and most of the packets in the network are generated
by the top 10% of large flows, which means that a small number of
flows in a network have large bandwidth requirements. Identifying
the top-𝐾 flows is critical in a wide variety of application scenarios,
uch as traffic rerouting [3], anomaly detection [4], network slicing
5–7], time-sensitive network [8–10], and caching of forwarding table
ntries [11].
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nd Network Analytics (NA) [15]. As shown in Fig. 1(a), KDN sets
p an artificial brain that gathers knowledge (e.g., how to identify
he top-𝐾 flows online) about the network and then exploits that
nowledge to design various management policies. However, online
dentification of top-𝐾 flows is still a challenging task due to many
actors. On one hand, the solution space can be exponential to the
etwork size due to combinatorial explosion. For example, top-𝐾 flows
re identified among 𝑀 flows, the solution space of this problem has
𝐾
𝑀 combinations. We simply set 𝐾 = 10, 𝑀 = 100 [16], and there
re as many as 17 trillion combinations possible in the solution space.
n the other hand, the time fluctuations of different types of traffic
emand are not consistent [17,18], which brings greater challenges to
ynamically identifying top-𝐾 flows. Even if we reduce 𝐾 to 1, the task
f online identification is still very challenging, as shown in Fig. 1(b),
rom 𝑡0 to 𝑡1, the bandwidth requirement of flow 1 is the highest, thus
low 1 is the target flow. However, the bandwidth requirements of the
lows change over time, so the target flow also changes over time. From
1 to 𝑡3, flow 2 is the target flow, while after 𝑡3, the target flow should
e flow 3.

Although now some researchers have carried out related research
n finding the top-𝐾 elephant flows [19], or the identification of top-

critical flows [16] in specific scenarios, their researches focused on
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Fig. 1. The problem of identifying the top-𝐾 flows in SDN based on the KDN concept.
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dentifying elephant flows within a time window, or ignore tempo-
al changes in traffic flow bandwidth requirements. As shown in the
bove example, to tackle the vast solution space and various kinds
f flows’ bandwidth requirements uncertainties, a reasonable online
dentification mechanism for the top-𝐾 flows is desired.

In this paper, we investigate the problem of how to identify the
hanging top-𝐾 flows online [20] in SDN effectively, that is to continu-
usly identify the top-𝐾 flows. We innovatively define the problem as a
ariant of the best arms identification task in stochastic Combinatorial
ulti-Armed Bandit (CMAB) [21], namely, identify the top-𝐾 arms in
MAB. Unlike some existing works, our work considers the temporal
hanges of the reward distributions of all arms and ignores the tradeoff
etween exploration and exploitation, a detailed definition of our study
nd how it differs from existing work can be found in Section 3, and
ection 2. B, respectively. Then, we propose a general greedy arms
election mechanism based on different identification strategies.

The main contributions of this paper are summaries as follows.

• We formulate the online top-𝐾 flows identification problem in
SDN as a variant of the best arms identification task in CMAB with
the aim of maximizing the cumulative reward. Then, we propose
a general greedy arms selection mechanism based on different
identification strategies.

• We verify the performance of our proposed arms selection mech-
anism using traffic data from two real network topologies. Exten-
sive simulation results demonstrate that our proposed mechanism
far outperforms the benchmark algorithms in performance, and
the identification result of our proposed mechanism can be close
to 99% of the theoretically optimal solution.
The remainder of the paper is organized as follows: Section 2
eviews the related work. In Section 3, we state the research problem
n our work. Section 4 introduces the details of our proposed gen-
ral greedy arms selection mechanism. In Section 5, we present the
umerical results, and finally, we conclude the paper in Section 6.

. Related work

In this section, we present the study of related work on finding
op-𝐾 flows. In addition, because the Multi-Armed Bandit (MAB) and
MAB model can bring a lot of benefits to the research in the net-
orking field [22], we also introduce the related work of best arms

dentification in MAB in this part, which is closely related to our
esearch.

.1. Finding top-𝐾 flows

Metwally A et al. proposed the first algorithm Space-Saving [23] that
can guarantee both the correctness and the order of the top-𝐾 flows
in the case of the data skew. Besides, their proposed algorithm only
uses minimal space. To further reduce memory usage, unlike Space-
Saving, Ben-Basat R et al. [24] used statically allocated memory rather
than pointers. However, such strategies greatly overestimated the size
of the flows, thereby degrading the accuracy performance. To solve this
defect, Yang T et al. [19] proposed a probabilistic method to keep top-
𝐾 flows in the bucket, moreover, they used multiple hash tables with
different hash functions to address the problems of wrong elections and
wrong estimation.

In [19,23,24], a flow is defined as a combination of certain packet
header fields (e.g.,5-tuple), but in some other scenarios, like traffic
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Table 1
Comparison of related works.
Literature Number of 𝐾 Reward distribution of

arms in experiments
Consider tradeoff between
exploration and exploitation

Audibert et al. [25] 1 Allows Bernoulli
distributions

Y

Bubeck et al. [26] Varies with the total
number of arms

Allows Bernoulli
distributions

Y

Zhang et al. [27] No more than 5 Allows Gaussian
distribution or
exponential distribution

Y

Zhuang et al. [28] No more than 3 Allows Bernoulli
distributions

Y

Ours Varies with the size
of the network

Generated from real
traffic data, and varies
over time

N

engineering, a flow can be defined as a source–destination pair. Zhang
J et al. [16] investigated the traffic flow rerouting problem in SDN.
Interestingly, they found that compared to simply rerouting top-𝐾
flows, their reinforcement learning-based strategy can better identify
the key flows in the network, thereby taking into account the overhead
of rerouting and maximizing link utilization.

However, the mentioned related works only considered identifying
the top-𝐾 flows within a specific time window and ignored the flows’
bandwidth requirements fluctuations.

2.2. Best arms identification

The Best arms identification problem is a different viewpoint [25]
in the MAB model, it allows the players to play the bandit within a
given number of rounds, also called a budget. Then, players should
determine an or a set of arms that with a higher expected reward. J.-Y.
Audibert et al. [25] proposed a Successive Rejects policy that gradually
rejects arms that seem suboptimal, but this policy is only used to
identify the best arm. Similar to the Successive Rejects idea, Bubeck
S et al. [26] proposed the Successive Accepts and Rejects (SAR) policy
which can identify the top-𝐾 arms. Further, Zhang et al. [27] proposed
a quantile version of SAR (Q-SAR) which determines the optimal arms
set through the quantile of the reward distributions rather than the
mean. Zhuang et al. [28] considered a different scenario of top-𝐾
arms identification, they proposed two sampling strategies to identify
the arms with extremely high or low expected rewards that are very
different from others.

However, while in the above studies, the reward distributions of
the arms were invisible to the players when designing the experiment,
the rewards were generated by specific distributions. But in reality, the
distribution of rewards may change over time. About the difference
between our work and related works is summarized in Table 1, and
a detailed definition of the research problem in our work can be found
in Section 3.

3. Problem statement

In this section, we describe the problem of identifying the chang-
ing top-𝐾 flows online in SDN. Note that, for ease of reference, the
notations used in this paper are summarized in Table 2.

3.1. Problem definition

In SDN, at every sampling granularity 𝑇 (e.g., 5 min, 15 min...),
we need to identify the top 10% of flows that require more bandwidth
resources based on all statistics collected for all network flows, in our
current work, flows are defined as source–destination pairs [16]. This
process is shown in Fig. 2 that is similar in spirit to [29,30], where

𝑑𝑎𝑡𝑎𝑇𝑛 represents the statistical data collected from 𝑡𝑛−1 to 𝑡𝑛.
Table 2
Summary of notations.

Notation Definition

𝑁 Number of nodes in a network
𝑛 Number of total rounds
𝑀 Number of total arms
𝐾 Number of top-𝐾 arms
𝑦𝑖 Reward distribution of the 𝑖th arm
𝑋𝑖,𝑡 Random reward of the 𝑖th arm in the 𝑡th round
𝑖,𝑡 The random reward information of the 𝑖th arm up to the 𝑡th round
𝑋𝐸

𝑖,𝑡 Expected reward of the 𝑖th arm in the 𝑡th round
𝑆𝑡 The set of arms that the agent selects in the 𝑡th round
𝑆∗
𝑡 The set of optimum arms in the 𝑡th round

𝑟 The cumulative regret
𝑇 Sampling granularity
𝛼 Weight
𝑑 Sliding window

Fig. 2. Issues about identifications and validations over time.

Obviously, the problem of identifying top-10% flows online in SDN
can be transformed into a CMAB model. Assuming a total of 𝑁 nodes
in the network topology, in the CMAB model, there are a total of 𝑀
arms, and after each sampling granularity 𝑇 , the player needs to select
𝐾 arms together rather than one by one, where 𝑀 = 𝑁 ∗ (𝑁 − 1),
𝐾 = 10%𝑀 [2,16]. If we regard a flow as an arm, and consider the
bandwidth requirement 𝑋𝑖,𝑡 of the flow 𝑖 from 𝑡 − 1 to 𝑡 as the random

reward generated by selecting arm 𝑖 in round 𝑡. Then, our problem can
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be defined as Eq. (1), where 𝑛 represents the total number of rounds.

𝑎𝑥𝑖𝑚𝑖𝑧𝑒
𝑛
∑

𝑡

𝐾
∑

𝑖
𝑋𝑖,𝑡 (1)

Further, in the CMAB model, in the round 𝑡, the set 𝑆𝑡 of the arms
elected by the player is defined as a super-arm [21], and clearly, the
umber of super-arm combinations is 𝐶𝐾

𝑀 . If we define in the round 𝑡,
he set of arms that can make the player’s total reward1 maximum be
he optimal super-arm 𝑆∗

𝑡 , then our goal can be equivalent to Eq. (2),
ecause the goal of maximizing the cumulative rewards through the
ame is equivalent to minimize the difference between the optimum
uper-arm and the super-arm that selected by the player [31].

𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑟 =
𝑛
∑

𝑡
(
∑

𝑖∈𝑆∗
𝑡

𝑋𝑖,𝑡 −
∑

𝑗∈𝑆𝑡

𝑋𝑗,𝑡) (2)

.2. Discussion

To make the CMAB model more suitable for practical application
cenarios, we add some new constraints and assumptions.

• Time-varying rewards. In a general CMAB or some other multi-
armed bandit models, each arm is associated with a reward
distribution, which can be stationary or non-stationary. Typically,
the 𝑖th arm’s reward distribution can be represented as 𝑦𝑖 and
𝑦𝑖 is usually unknown to the players. However, in the network,
the reward distribution for an arm is not only unknown, but also
changes over time due to the sudden and time-varying nature of
user needs [17,18]. In this case, 𝑦𝑖 can be redefined as 𝑦𝑖(𝑡), which
means that the reward distribution of the 𝑖th arm is a function of
time.

• Reward information sharing. How to balance exploration and
exploitation is a key topic in CMAB models. But in SDN, we do
not need to consider this constraint. Due to the global view and
flexibility of SDN, the network managers can easily collect global
network flow statistics, such as traffic matrix. Thus, after each
round, players can obtain the random reward for the arms that
are not selected. In other words, after each round 𝑡, ∀𝑖 ∈ 𝑀,𝑋𝑖,𝑡
are available.

Although we do not need to consider the balance between explo-
ation and exploitation, due to the time-varying distribution of rewards
or each arm, how to use the historically collected reward sequence to
stimate the expected reward 𝑋𝐸

𝑖,𝑡+1 for the 𝑖th arm in the 𝑡 + 1 round
s difficult [32]. In short, the fewer past observations an arm retains,
he greater the stochastic error associated with an arm’s estimate of
he mean reward, while using more past observations at the same time
ncreases the risk of these being biased.

. General greedy selection mechanism

In this section, we first introduce the general greedy selection al-
orithm we designed, then introduce different identification strategies,
nd finally analyze the complexity of our designed algorithm.

.1. General greedy selection algorithm

• Motivation. Greed [20] is an important idea. Not only is it very
simple and easy to implement, but it always excels at solving
many practical problems, although it does not provide theoretical
guarantees. The core of the greedy idea is that in each round
𝑡, the player will always perform the action 𝐴𝑡 with the largest

1 In our work, the reward of selecting a super-arm in round 𝑡 is the sum of
the rewards of the arms in 𝑆𝑡, and a more complex definition of the reward
of 𝑆 is beyond the scope of this article.
𝑡
expected reward, where 𝐴𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖∈𝑀𝑋𝐸
𝑖,𝑡. Note that, 𝑋𝐸

𝑖,𝑡 is
calculated based on the 𝑖th arm’s historical reward data 𝑖,𝑡 =
{𝑋𝑖,1, 𝑋𝑖,2,… , 𝑋𝑖,𝑡−1}, and its specific calculation method is given
in Section 4.2. In each round, we can directly select the top 𝐾
arms with the largest expected reward to maximize the expected
reward.

• Implementation. Generally, greed can be implemented in the
following three steps. (1) For each arm 𝑖 ∈ 𝑀 , calculate its
expected reward in the next round according to all the historical
random reward data 𝑖,𝑡. (2) Rank all the arms according to their
expected reward. (3) The top 𝐾 arms are selected as the super-
arm in the next round. Note that, as shown in Fig. 2, our CMAB
starts in the second round to avoid the problem of setting the
initial reward of each arm. Algorithm 1 shows the pseudo-code
of the general greedy selection algorithm.

Algorithm 1 General Greedy Selection Algorithm
Input: number of total arms 𝑀 , number of top-𝐾 arms 𝐾, all collected
random reward 𝑖,1, for all arm 𝑖 ∈ 𝑀 , total number of rounds 𝑛.
Output: cumulative regret 𝑟.
1: Initialization: let 𝑟 = 0, 𝑡 = 1;
2: while 𝑛 > 0 do
3: for each arm 𝑖 ∈ 𝑀 do
4: Using 𝑖,𝑡, calculate 𝑋𝐸

𝑖,𝑡+1 according to various equations in
Section 4.2;

5: end for
6: Sort all arms 𝑖 ∈ 𝑀 by its 𝑋𝐸

𝑖,𝑡+1 in ascending order;
7: Let 𝑆𝑡+1 = {𝑖0, 𝑖1,⋯ , 𝑖𝑘}; // get the super-arm
8: Let 𝑡 = 𝑡 + 1, 𝑛 = 𝑛 − 1; // end of current round
9: For 𝑖 ∈ 𝑀 , let 𝑖,𝑡+1 = 𝑖,𝑡 +𝑋𝑖,𝑡+1;

10: 𝑟 = 𝑟 + (
∑

𝑖∈𝑆∗
𝑡+1

𝑋𝑖,𝑡+1 −
∑

𝑗∈𝑆𝑡+1

𝑋𝑗,𝑡+1);

1: end while
2: return 𝑟.

In Algorithm 1, lines 8 to 9 indicate that after each round, we need
to maintain some necessary information, such as the collected historical
reward information and the number of rounds.

4.2. Identification strategies

As mentioned before, how the expected reward of arm 𝑖 is calculated
plays a decisive role in our online identification task. In this part, we
propose several different strategies for calculating expected rewards,
which are also defined as identification strategies.

4.2.1. Mean-greedy
Taking the average of all historical random rewards of arm 𝑖 as its

expected reward for the next round is a naive calculation method [33,
34], which we call mean-greedy. 𝑋𝐸

𝑖,𝑡+1 can be calculated through
Eq. (3).

𝑋𝐸
𝑖,𝑡+1 =

𝑋𝑖,1 +𝑋𝑖,2 +⋯ +𝑋𝑖,𝑡

𝑡
(3)

4.2.2. Weighted-greedy
The mean-greedy strategy is only suitable for stationary bandits

model, and for some non-stationary bandits models, it makes sense to
give more weight to the recent reward than the reward of a long time
in the past [35]. We call this strategy weighted-greedy, and 𝑋𝐸

𝑖,𝑡+1 is
alculated through Eq. (4), where 𝛼 ∈ (0, 1] is the weight parameter.
𝐸
𝑖,𝑡+1 = 𝛼𝑋𝑖,𝑡 + (1 − 𝛼)2𝛼𝑋𝑖,𝑡−2 +⋯

+ (1 − 𝛼)𝑡−1𝛼𝑋𝑖,1 (4)

=
𝑡

∑

(1 − 𝛼)𝑡−𝑗𝛼𝑋𝑖,𝑗

𝑗=1
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Table 3
Complexity analysis in a single round.

Method Temporal complexity Spatial complexity

Mean-greedy O(𝑀 +𝑀𝑙𝑜𝑔2𝑀) O(𝑀)
Weighted-greedy O(𝑀 +𝑀𝑙𝑜𝑔2𝑀) O(𝑀)
Sliding window-greedy O(𝑀 +𝑀𝑙𝑜𝑔2𝑀) O(𝑑𝑀)

Table 4
Information of topology.

Topology 𝑁 𝑀 𝐾 𝑇 𝑛

Abilene 12 132 13 5 min 1728
Geant 22 462 46 15 min 672

4.2.3. Sliding window-greedy
Similar to the weighted-greedy strategy, sliding window-greedy also

focuses on recent random rewards information. However, unlike the
weighted-greedy, sliding window-greedy only focuses on the recent
𝑑 random reward values, and completely ignores random rewards
nformation collected a long time ago. In this strategy, 𝑋𝐸

𝑖,𝑡+1 can be
calculated by Eq. (5), where 𝑑 ≥ 1 is the sliding window.

𝑋𝐸
𝑖,𝑡+1=

∑𝑡
𝑗=𝑡−𝑑 𝑋𝑖,𝑗

𝑑
(5)

.3. Complexity analysis

Next, we analyze the complexity of our proposed general greedy
election algorithm in a single round (lines 3 to 8 in Algorithm 1). First,
or the first for loop, we have to calculate 𝑋𝐸

𝑖,𝑡+1. Note that, we do not
ave to use all the collected historical random rewards information. For
𝑒𝑎𝑛−𝑔𝑟𝑒𝑒𝑑𝑦, 𝑋𝐸

𝑖,𝑡+1 =
(𝑡−1)⋅𝑋𝐸

𝑖,𝑡−1+𝑋𝑖,𝑡

𝑡 , and for 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑−𝑔𝑟𝑒𝑒𝑑𝑦, 𝑋𝐸
𝑖,𝑡+1 =

1 − 𝛼) ⋅𝑋𝐸
𝑖,𝑡−1 + 𝛼 ⋅𝑋𝑖,𝑡. Thus, for these two strategies, maintaining the

xpected reward for the last round is sufficient for each arm. However,
or the 𝑠𝑙𝑖𝑑𝑖𝑛𝑔 𝑤𝑖𝑛𝑑𝑜𝑤 − 𝑔𝑟𝑒𝑒𝑑𝑦, calculating 𝑋𝐸

𝑖,𝑡+1 relies on the recent
historical random reward data, for such cases, we need to maintain
data for each arm. Then, the temporal complexity for the sorting

rocess is O(𝑀𝑙𝑜𝑔2𝑀). The above results are summarized in Table 3.

. Numerical results

In this section, we evaluate the performance of our proposed general
reedy selection algorithm with different identification strategies. We
irst introduce the dataset we used, then we describe the state-of-
he-art top-𝐾 arms identification algorithms. Finally, we conduct an
xtensive simulation to compare our proposed algorithm with some
ther identification algorithms.

.1. Dataset

In our work, we evaluate the performance of different algorithms
sing two real-world network topologies (Abilene and Geant, respec-
ively)2 that are widely used in the field of computing network re-
earch [16,36,37]. Table 4 summarizes the properties of these topolo-
ies, such as the number of nodes, sampling granularity, and the
umber of top-𝐾 flows. For the Abilene network, we collected band-
idth requirements for 6 days (starting April 2, 2004) for a total of
728 traffic matrices. For the Geant network, we choose a total of 672
raffic matrices over a week (starting May 5, 2005) as our dataset.

Note that, for some other identification algorithms (SAR, Q-SAR),
e need to use the first 70% bandwidth demand data in the dataset to

andomly generated reward data for arms determination. Please refer
o Section 5.2 for specific instructions.

2 information available at: http://sndlib.zib.de/home.action.
5.2. Introduction of compared algorithms

In our simulation, we compare our proposed greedy selection algo-
rithm with the random selection algorithm, SAR [26] and Q-SAR [27].
The random selection algorithm is the weakest baseline. If the per-
formance of an algorithm is weaker than random selection, we can
consider this algorithm to be meaningless. SAR and Q-SAR are excellent
related works that are used to identify the top-𝐾 best arms in MAB. Be-
fore presenting our simulation results, we first give a brief introduction
to these compared algorithms.

• Random: The random selection algorithm completely ignores the
historical reward information of the arms, and in each round 𝑡, it
always randomly selects 𝐾 different arms.

• SAR [26]: SAR focuses on identifying the top-𝐾 arms in a multi-
armed bandit game with a fixed budget. It first divides the rounds
into 𝑀 −1 phases, then in each phase, SAR pulls each active arm
at the same frequency. After each phase, SAR either accepts the
arm with the highest empirical average or removes the arm with
the lowest empirical average.

• Q-SAR [27]: Q-SAR is a revised version of SAR. Similar to SAR,
Q-SAR also first divides the given budget into 𝑀 − 1 phase,
and then pulls all the arms equally. Unlike SAR, which uses the
empirical mean as the summary statistic, Q-SAR uses quantiles as
the summary statistic, and then it decides whether to accept or
reject an arm based on the best and worst empirical gaps instead
of all empirical gaps.

The tasks of both SAR and Q-SAR are to output a set {𝑖1, 𝑖2,… , 𝑖𝐾}
orresponding to the set of arms with the 𝐾 highest mean rewards after
xploring the multi-arm gambling machine to a specified round (fixed
udget). In the original work of related researchers, the reward for each
rm obeyed a fixed reward distribution, and we can call this type of
roblem an offline problem, which means that the reward distribution
oes not change over time. In our evaluation, we use the nearly top
0% bandwidth requirement data of the dataset as training data (for
bilene, training data begins at 00:00 on April 4, 2004, and ends at
6:10 on April 6, 2004, and for Geant, training data begins at 00:00 on
ay 5, 2005, and ends at 21:30 on May 9, 2005) to randomly generate

andom rewards for the arms for SAR and Q-SAR algorithms. Then, we
se the remaining 30% of the data as the testing data (for Abilene, there
re a total of 201 bandwidth demand matrix data, and for Geant, the
umber is 501) to verify the performance of all algorithms.

.3. Evaluation indicators

To more intuitively reflect the performance difference of the algo-
ithms, in addition to the cumulative regret defined in Eq. (2), we also
efine an additional indicator 𝑅𝑆∗ ,𝑆 (𝑡) to measure the cumulative sim-
larity between the super-arms selected by algorithms and the optimal
uper-arms, where 𝑅𝑆∗ ,𝑆 (𝑡) can be calculated by Eq. (6).

𝑆∗ ,𝑆 (𝑡) =

∑

𝑡
∑

𝑖∈𝑆𝑡
𝑋𝑖,𝑡

∑

𝑡
∑

𝑖∈𝑆∗
𝑡
𝑋𝑖,𝑡

(6)

5.4. Evaluation results

First, we need to evaluate the effectiveness of greed. We compare
the performance of the naive mean-greedy strategy and random se-
lection algorithm. As shown in Figs. 3, 4, in a period of time, the
mean-greedy strategy can effectively approach the theoretical optimum
super-arm at each round and outperform the random selection algo-
rithm. However, its performance starts to degrade when the reward
distributions of arms change.

Next, we compare the performance of different identification strate-
gies in our general greedy selection algorithm. Initially, we set 𝑤 =

0.01, 𝑑 = 20. As shown in Figs. 5, 6, because both weighted-greedy

http://sndlib.zib.de/home.action
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Fig. 3. Experiment 1 in Abilene network.

Fig. 4. Experiment 1 in Geant network.

Fig. 5. Experiment 2 in Abilene network.

nd sliding window-greedy strategies focus much more on the recent
istorical random reward information, it can adapt to the temporal
hanges of the reward distributions better (after 1150 rounds in the
bilene, and after 500 rounds in the Geant). However, we also notice

hat sometimes their performance may drop drastically (e.g., in the 1445
ound in Abilene). Thus, we should investigate how the weight and
liding window affect the performance.

We try to gradually increase 𝑤 and reduce 𝑑 to reduce the focus on
istorical reward data from a long time ago, and observe the change
n performance. Interestingly, at least in our validation experiments,
erformance improves effectively as we pay more and more attention
o recently received random rewards information, as shown in Figs. 7,
, 9, and 10. For the weight-greedy strategy, the performance seems to
each a maximum when 𝑤 increases to a certain extent. Finally, we set
= 0.9, 𝑑 = 1 for the following comparative experiments.
To be fair, for SAR and Q-SAR, we set the exploration budget to be

arge enough (in our work, we set the fixed budget to be 100 times the
otal number of arms) to ensure that they can adequately perceive each
rm’s historical random reward information. We then compare the per-
ormance differences of various algorithms on testing dataset. As shown
n Figs. 11, 12, the performances of both SAR and Q-SAR are not ideal,
Fig. 6. Experiment 2 in Geant network.

Fig. 7. Experiment to determine 𝑑 in Abilene network.

Fig. 8. Experiment to determine 𝑑 in Geant network.

Fig. 9. Experiment to determine 𝑤 in Abilene network.

especially SAR, which has a very high cumulative regret. Although the
performance of Q-SAR in Geant network is significantly better than that
of SAR, its performance is still much weaker than the greedy selection
algorithm we designed. We also note that the performance of sliding
window-greedy far outperforms all other strategies, and its cumulative
regret is almost 0 over time. We then use 𝑅𝑆∗ ,𝑆 (𝑡 = 501, 201 in Abilene,
Geant, respectively) to evaluate the comparison results. We find that
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Fig. 10. Experiment to determine 𝑤 in Geant network.

Fig. 11. A comparison of various algorithms in Abilene network.

Fig. 12. A comparison of various algorithms in Geant network.

he identification result of sliding window-greedy can reach 99% of the
ptimal solution, which is almost equivalent to the optimal solution.
he above results are summarized in Table 5.

Note that, for SAR and Q-SAR, after exploration, they do not update
he evaluation of each arm, which means that they do not bring extra
ost. Thus, both SAR and Q-SAR assume that the reward distribution of
ach arm does not change over time. However, in many scenarios, the
bove assumption does not work. For our proposed scheme, to adapt
o the temporal variations in the rewards, we update the evaluation
f each arm after each round. It definitely brings extra cost, but as
oncluded in Table 3, generally, the extra cost is acceptable.

. Conclusion and future work

In this paper, we investigated the online top-𝐾 flows identification
problem in SDN and modeled it as a variant of the CMAB. With the help
of SDN’s global view, we appended the assumption of reward informa-
tion sharing. We were pleasantly surprised to find that a simple greedy
selection strategy works well for this task. At the same time, with the
constraint of temporally changing reward distributions of arms, some

traditional best arms identification algorithms lost their efficiency. In
Table 5
Summary of comparison result.

Topology Method 𝑅𝑆∗ ,𝑆

Abilene

SAR 33.96%
Q-SAR 67.33%
Mean-greedy 69.44%
Weighted-greedy 92.47%
Sliding window-greedy 99.38%

Geant

SAR 58.70%
Q-SAR 90.75%
Mean-greedy 91.92%
Weighted-greedy 95.92%
Sliding window-greedy 99.18%

addition, there are some interesting researches that we can carry out in
the future. For example, currently, we did not combine the top-𝐾 flow
dentification with some other network management tasks (e.g., traffic
ngineering, anomaly detection, SFC migration [38]. . . ). In such cases,
he reward of a super-arm should not be simply set up as a superposi-
ion of its sub-arms’ rewards, in other words, complicated forms of the
uper-arms need to be considered based on specific scenarios. Second,
e also need to adjust our CMAB model to some other multi-armed
andit models, like sleeping bandits, and contextual bandits, to adapt
o the realistic scenarios.
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